Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Braz. j. microbiol ; 48(2): 333-341, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839367

ABSTRACT

Abstract Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.


Subject(s)
Oryza/physiology , Oryza/microbiology , Stress, Physiological , Dehydration , Endophytes/growth & development , Plant Proteins/analysis , Oryza/enzymology , Brazil , Plant Roots/microbiology , Endophytes/isolation & purification , Antioxidants/analysis
2.
Braz. j. microbiol ; 48(1): 95-100, Jan.-Mar. 2017. tab
Article in English | LILACS | ID: biblio-839348

ABSTRACT

Abstract The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species’ capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.


Subject(s)
Mycorrhizae , Nitrogen-Fixing Bacteria , Fabaceae/microbiology , Symbiosis , Root Nodules, Plant/microbiology , Plant Root Nodulation , Nitrogen Fixation
3.
Braz. j. microbiol ; 48(1): 87-94, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-839361

ABSTRACT

Abstract In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.


Subject(s)
Plant Roots/microbiology , Mycorrhizae , Environment , Soil Microbiology , Spores, Fungal , Symbiosis , Colony Count, Microbial , Mycorrhizae/growth & development , Seedlings/growth & development , Seedlings/microbiology
4.
Acta amaz ; 40(4): 641-646, dez. 2010. ilus, graf, tab
Article in Portuguese | LILACS, VETINDEX | ID: lil-570427

ABSTRACT

Sistemas em aléias podem consistir numa solução para o uso da terra em regiões do Trópico Úmido. A relação dessa forma de manejo com a dinâmica dos fungos micorrízicos arbusculares (FMA) ainda é pouco compreendida. O objetivo desse estudo foi verificar a influência de leguminosas arbóreas em um sistema em aléias na capacidade infectiva e diversidade de FMA nativos em São Luís, Maranhão. Amostras de solo coletadas do sistema em aléias no campus experimental da Universidade Estadual do Maranhão (UEMA) - São Luís, em duas épocas do ano (Julho/2006 e Abril/2007), a duas distâncias (0 m e 0,5 m) do tronco de três leguminosas (Leucaena leucocephala, Clitoria fairchildiana e Acacia mangium) e em área testemunha (sem leguminosas) na profundidade de 0 - 20 cm. O solo coletado foi utilizado para avaliar a capacidade infectiva dos FMA nativos, densidade e identificação de glomerosporos. O sistema em aléias aumenta o potencial de infectividade dos FMA nativos dependendo da espécie de leguminosa arbórea associada, estação de coleta e proximidades das árvores. Dezesseis espécies de FMA foram encontradas na área distribuídas em cinco gêneros, sendo Scutellospora o mais representativo.


Alley cropping systems may be a solution for land use in tropical regions. How land use is connected to mycorrhizal arbuscular fungi (AMF) is poorly understood, especially in the tropics. The aim of this study was to evaluate the influence of leguminous trees in an alley cropping system in regard to the infectivity and diversity of native AMF species in São Luís, Maranhão, Brazil. Soil samples were collected in an experimental area of the Universidade Estadual do Maranhão (UEMA) - São Luís, in two seasons (July/2006 and April/2007), two distances (0 m and 0.5 m) from the trunk of three leguminous trees (Leucaena leucocephala, Clitoria fairchildiana e Acacia mangium), and in a control area 0-20 cm deep. Soil samples were used to evaluate the infectivity of AMF, density and diversity of glomerospores. The alley cropping systems increased the infectivity of AMF which varied according to the leguminous tree species, raining season and distance from trees. Sixteen AMF species of five genera were identified in the area, and Scutellospora was the most representative genus.


Subject(s)
Forests , Mycorrhizae , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL